Kolloquiumsvortrag Physik: Probing Quantum Physics in Matter-Wave Interferometry with Complex Particles

Jan 16
16. Januar 2019 12:00 Uhr bis 13:00 Uhr
Hörsaal H, Staudtstr. 5, 91058 Erlangen

Beachten Sie bitte die neue Zeit und den neuen Ort des Kolloquiums!
Im Anschluss wird es bei einem Imbiss Gelegenheit zum wissenschaftlichen Austausch geben.

Probing Quantum Physics in Matter-Wave Interferometry with Complex Particles

Quantum physics is the best-confirmed theory of nature, is readily visualized1, 2 and yet important questions have remained open: Why do we find unitary evolution in quantum mechanics but not in the macroscopic world we live in? What defines the cut between coherent superpositions of quantum states and seemingly irreversible measurements among many mutually exclusive possibilities? These questions have been guiding our research on matter-wave interferometry3. We were able to demonstrate the quantum wave nature of entire fullerenes, vitamins4, polypeptide antibiotics and macromolecules up to 10’000 amu5. In all experiments so far, quantum mechanics was confirmed and distinct from a classical world view. I will discuss recent advances in a new long-baseline matter-wave interferometer that can cope with de Broglie wavelengths even below 100 fm and optomechanics experiments with silicon nanospheres and nanorods6,7, 8 that are expected to explore the limits of free-fall matter-wave interference in an Earth based lab.

1. Juffmann T, et al. Real-time single-molecule imaging of quantum interference Nature Nanotechn 7, 297 – 300 (2012).
2. Brand C, et al. An atomically thin matter-wave beamsplitter. Nature Nanotechnology 10, 845-848 (2015).
3. Arndt M, Hornberger K. Insight review: Testing the limits of quantum mechanical superpositions. Nat Phys 10, 271-277 (2014).
4. Mairhofer L, Eibenberger S, Cotter JP, Romirer M, Shayeghi A, Arndt M. Quantum-Assisted Metrology of Neutral Vitamins in the Gas Phase. Angew Chem Int Ed 56, 10947 – 10951 (2017).
5. Eibenberger S, Gerlich S, Arndt M, Mayor M, Tüxen J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Phys Chem Chem Phys 15, 14696 – 14700 (2013).
6. Asenbaum P, Kuhn S, Nimmrichter S, Sezer U, Arndt M. Cavity cooling of free silicon nanoparticles in high-vacuum Nature Communications 4, 2743 (2013).
7. Stickler BA, Nimmrichter S, Martinetz L, Kuhn S, Arndt M, Hornberger K. Rotranslational cavity cooling of dielectric rods and disks. Phys Rev A 94, 033818 (2016).
8. Kuhn S, et al. Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum. Nano Lett 15, 5604−5608 (2015).

Vortragender: Prof. Markus Arndt, University of Vienna, Faculty of Physics, QNP Group

Kontakt: Prof. S. Götzinger